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Alzheimer’s disease (AD) is an irreversible neurological disorder that affects the
vast majority of dementia cases, leading patients to experience gradual memory
loss and cognitive function decline. Despite the lack of a cure, early detection of
Alzheimer’s disease permits the provision of preventive medication to slow the disease’s
progression. The objective of this project is to develop a computer-aided method
based on a deep learning model to distinguish Alzheimer’s disease (AD) from cognitively
normal and its early stage, mild cognitive impairment (MCI), by just using structural MRI
(sMRI). To attain this purpose, we proposed a multiclass classification method based
on 3D T1-weight brain sMRI images from the ADNI database. Axial brain images were
extracted from 3D MRI and fed into the convolutional neural network (CNN) for multiclass
classification. Three separate models were tested: a CNN built from scratch, VGG-
16, and ResNet-50. As a feature extractor, the VGG-16 and ResNet-50 convolutional
bases trained on the ImageNet dataset were employed. To achieve classification, a new
densely connected classifier was implemented on top of the convolutional bases.

Keywords: Alzheimer’s disease, deep learning, prediction, magnetic resonance imaging, mild cognitive
impairment

INTRODUCTION

Alzheimer’s disease (AD) is a progressive disease that causes neuronal loss and dementia in
the elderly. Alzheimer’s disease patients typically exhibit progressive memory loss at the outset,
followed by cognitive decline and, eventually, loss of independence. It is predicted that by 2050,
one out of every 85 people in the world will have AD (Brookmeyer et al., 2007). At the moment,
there are approximately 90 million people who have been identified as having AD, and the number
of diseased patients is expected to reach 300 million by 2050 (Zhu et al., 2015).

There are medications that can provide temporary moderate symptom relief or slow the
progression of AD, and these treatments have been shown to help patients with AD by achieving
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maximum cognitive function and maintaining independence for
a period of time. However, there are currently no effective or safe
drugs or therapies for curing Alzheimer’s disease or altering the
disease process in the brain (Tatiparti et al., 2020). The search
for effective strategies to treat or prevent Alzheimer’s disease
remains one of the most difficult endeavors in medicine. As a
result, it is critical to detect Alzheimer’s disease in its early or
prodromal stages so that patients can receive treatment before the
disease progresses. Currently, the standard non-invasive clinical
strategy for performing prognostic prediction for Alzheimer’s
disease is manual assessment via structural neuroimaging such
as magnetic resonance imaging (MRI) or computed tomography
(CT). Computer-aided methods based on artificial intelligence
(AI) algorithms are currently being used to accomplish AD
diagnostics (Wen et al., 2020).

In tandem with the rapid growth of AI, academics have
been employing AI techniques such as deep learning to address
complex problems in a variety of sectors, particularly medicine.
Researchers have extended the use of multiple deep learning
models to diagnose various stages of Alzheimer’s disease. Current
neuroimaging investigations that use computer-aided system
studies have made substantial progress in classifying Alzheimer’s
disease (AD) and cognitively normal (CN) participants. Even
though the binary classification of AD and CN participants
performed admirably, it is not as useful as predicting the early-
stage change of moderate cognitive impairment (MCI) to AD.
The majority of research stopped at a binary categorization,
without predicting whether a patient had MCI or the likelihood
of converting to AD.

Detecting Alzheimer’s disease in its prodromal stage, or
anticipating its potential, is critical for its treatment, just as it
is for other diseases. Treatments are successful if AD patients
receive them as soon as feasible after being suspected of having
AD biomarkers or symptoms. A 1-year delay in the progression
of Alzheimer’s disease can decrease the number of afflicted people
by 10% (McKhann et al., 2011). According to the statistics,
detecting Alzheimer’s disease in its early stages is critical to reduce
the number of patients worldwide.

Neurologists must manually study brain scans and undertake
cognitive assessments during the diagnosis of Alzheimer’s disease
in order to make an accurate diagnosis of the symptoms
and course of the disease. Because subtle changes in brain
anatomy can be observed years before distinct biomarkers can
be visualized by humans, it is realized that the human visual
system is incapable of identifying subtle changes in underlying
brain structure that may contain vital information about a
patient’s disease state, even when the analysis is performed by
the experienced neurologists. As a result, an AI-based computer-
aided system can assist neurologists in detecting complicated
brain illnesses while reducing the potential for misdiagnosis.
Moreover, it is expected to decrease the workload on medical
professionals and reduce the frequency of patient visit and
waiting time. Many recent studies (Basaia et al., 2019; Bi et al.,
2020; Jiang et al., 2020; Guo et al., 2021; Hett et al., 2021;
Mehdipour Ghazi et al., 2021; Deng et al., 2022) have been
conducted to forecast early stages of Alzheimer’s disease. The goal
of this study is to build a computer-aided system based on a deep

learning algorithm to evaluate the pathological brain structural
changes in MRI data in order to forecast the early stages of
Alzheimer’s disease before it progresses to the severe stages. The
contributions of this proposed study are as follows:

1. Performing novel preprocessing procedures on brain
structural MRI used for training and testing the
convolutional neural network.

2. Implementing CNN to perform multiclass classification
(3-way) to classify cognitively normal (CN), MCI,
and AD subjects.

3. Evaluating the performance by metrics such as accuracy,
precision, recall, and F1-score.

The rest of this article is organized as follows: the following
section discusses the materials and methods used in this study
and the subsequent section elaborates the experimental results
and discussion. The final section emphasizes the conclusion and
future research directions.

MATERIALS AND METHODS

Dataset—Alzheimer’s Disease
Neuroimaging Initiative
The relevant data were retrieved from the database of the
Alzheimer’s Disease Neuroimaging Initiative (ADNI), which is
available publicly upon approval from the ADNI. The ADNI
database contains multiple collections of MRI images categorized
by phase of the study, for example, ADNI1, ADNI2, ADNI-GO,
and ADNI3 (as of August 2021). This study adopts all the sMRI
data in the ADNI1 collection. A total of 819 subjects (229 CN, 398
with MCI, and 192 with AD) were enrolled at baseline. The CN
class consists of healthy aging controls with no conversion within
3 years of follow-up visits from baseline. Subjects diagnosed with
mild cognitive problems without losing their ability to carry out
daily activities were retained in the MCI class. The AD class
comprises patients identified as AD through diagnosis at baseline
and exhibit no sign of reversion within 2 years of follow-up visits.

All the acquired sMRI were generated from scanners of
various manufacturers, such as Philips, Siemens, and General
Electric. On account of the various acquisition protocols, the
dataset will undergo a preprocessing procedure. There is 1.2 mm
spacing between two MRI scans, and the dimension of a voxel
is 256 × 256 × 256. In terms of resolution, there is only a slight
difference found across the patients. The data used were restricted
to the standard 1.5 T T1-weighted sMRI, which were acquired by
the volumetric three-dimensional magnetization-prepared rapid
gradient-echo (3DMPRAGE) protocol. Other data acquisition
settings include 8-channel coil, TR = 650 ms, TE = minimum full,
flip-angle = 8◦, and FOV = 26 cm. Participants may have multiple
scans at baseline and follow-up visits (after 1, 2, and 3 years).

The data used were restricted to the standard 1.5 T
T1-weighted sMRI, which were acquired by the volumetric
three-dimensional magnetization-prepared rapid gradient-echo
(3DMPRAGE) protocol. Other data acquisition settings include
8-channel coil, TR = 650 ms, TE = minimum full, flip-angle = 8◦,
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and FOV = 26 cm. Participants may have multiple scans at
baseline and follow-up visits (after 1, 2, and 3 years). It is
important to note that not all participants appeared at every
planned follow-up visit. Some participants were retained in the
study without appearing at every follow-up meeting. There was
also a significant decrease in follow-up visit rate after 2 years,
indicating that fewer data were available over time. Table 1
summarizes the demographic information for the 819 subjects
with age ranges from 55 to 92 years, including 192 patients
with AD, 398 subjects belonging to the MCI, and 192 who are
cognitively normal and were included in the study. Based on
Table 1, it can be seen that the CN group is more educated
than the MCI and AD groups with mean education years of
16.0 ± 2.9 years, and the MCI group is the youngest among the
three groups with a mean age of 74.7 ± 7.4 years.

Proposed Model
The process of the proposed approach is depicted in Figure 1.
As a result, the acquired ADNI1 dataset is initially subjected to
a number of preprocessing methods. The retrieved 2D images
are then divided into training, validation, and testing sets. Three
CNN models are evaluated: a CNN trained from scratch, VGG-
16, and ResNet-50. The training data was supplemented before
feeding the training data into the CNN models for training.

Preprocessing
Preprocessing was applied to each brain sMRI to normalize
the data into desired form and format. The routine of
preprocessing steps can be summarized into six different steps:
(1) skull-stripping, (2) non-uniform intensity correction, (3)
segmentation, (4) extraction of 2D image from 3D MRI volume,
(5) pixel values normalization, and (6) data augmentation.

Skull Stripping
Skull stripping is the removal of the skull from a 3D brain MRI.
For quantitative morphometric studies, the skull is the non-
brain tissue that functions as noise, lowering CNN classification
performance (Goceri and Songül, 2017). Aside from that,
removing the skull from the brain enhances segmentation
outcomes. To obtain solely the brain tissues, the skull section was
stripped or deleted using the DeepBrain library. Figures 2A,B
depicts the raw brain had its skull stripped together with intensity
normalized using the DeepBrain library.

Bias Field Correction
Strong bias fields are known to cause voxel tissue type
mislabeling, undermining the algorithm’s accuracy, which is
based on gray and white matter contrast (Gupta et al., 2019).
To keep this impact to a minimum, the N4 bias field correction
method was used in conjunction with the SimpleITK library for
correcting low-frequency intensity presented non-uniformly in
brain sMRI (Tustison et al., 2010). Following that, the intensity
variation of the same brain tissue was deleted based on its
location within the image. The bias-corrected brain displayed
more consistent intensity in the white matter region (Figure 2C).

TABLE 1 | Demographic of participants with MCI and AD and cognitive normal
subjects from the study population.

Diagnostic type Number of
participants

Age Gender (M/F) Education
(years)

CN 229 75.8 ± 5.0
(59.9–89.6)

119/110 16.0 ± 2.9
(6–20)

MCI 398 74.7 ± 7.4
(54.5–89.3)

257/141 15.7 ± 3.0
(4–20)

AD 192 75.3 ± 7.5
(55.1–90.9)

101/91 14.7 ± 3.1
(4–20)

Tissue Segmentation
The hidden Markov random field (HMRF) tissue classifier was
used to segment T1-weighted sMRI data that had previously been
skull-stripped and bias field corrected (Zhang et al., 2001). The
hidden Markov models were used to develop the HMRF idea.
In contrast to hidden Markov, HMRF features an underlying
Markov random field rather than a Markov chain.

The brain sMRI volumes were segmented into three
different regions of GM, WM, and CSF using the HMRF
tissue classifier from the DIPY library. These three
main features were used to differentiate AD from MCI
and CN. Alterations in WM and GM were commonly
used for the analysis of AD progression (Klöppel et al.,
2008). In ML approach studies, it would be laborious to
perform tissue segmentation and feature extraction. Hence,
automated segmentation is essential for a dataset with a
large number of images. Figure 2D shows the plotting of
the resulting segmentation with a clear separation between
GM, WM, and CSF.

Extraction of 2D Images From the 3D Volume
The Matplotlib library was used to extract 2D slices or images
from the segmented 3D MRI after the segmentation phase. More
specifically, brain pictures in PNG format were recovered from
the axial view of the 3D MRI slices ranging from the 160th to
170th slice. Slices in this range provide a wealth of information
about the GM, WM, and CSF. For the three courses, a total
of 2,387 brain scans were performed (CN, MCI, and AD).
Good model performance is associated with selecting the best
available slices containing relevant morphological information
(Stoeckel and Fung, 2005). Given the preferable slice range,
every interval of five slices (e.g., 160th, 165th, and 170th) of
three brain images were extracted from the MRI volume of
the AD and CN subjects, in which AD and MCI have 2,043
and 2,051 images, respectively. One scan was removed from
the CN class due to file corruption. In addition, two brain
images (160th and 165th) were extracted for the MCI class that
yielded 2,044 images.

A padding private function was implemented to add padding
to all final images, so that the output images have a uniform
dimension of 271 × 271 pixels. Here, the images were saved in
gray scale format and named according to their classes with a
number suffix in an increasing sequence. After preprocessing, the
data were all in the form of 2D images. This helps to substantially
reduce the dataset size from 37 GB to 260 MB.
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FIGURE 1 | Workflow of the proposed model. A preprocessing steps, which include noise removal and intensity normalization, segmentation, pixel value
normalization, and 2D image extraction and data augmentation, will be performed followed by the classification by an AD-CN-MCI CNN classifiers.

FIGURE 2 | Preprocessing steps: (A) raw bran MRI, (B) skull stripped MRI, (C) bias field corrected MRI, and (D) tissue segmented MRI (WM is denoted in yellow,
GM is denoted in green, and CSF is denoted in light blue).

Pixel Values Normalization
As of this stage, every image data were in gray scale with pixel
values ranging between 0 and 255 (8-bit). Before the training
process, we normalize every image pixel value with a value
between 0 and 1.

Data Augmentation
The process of data augmentation was performed to mitigate the
general problem of the small dataset, which is overfitting during
training, by applying various transformations on the images from
the dataset. The transformations used were rotation of 15◦, zoom
range of 0.10◦, height shift range of 0.10◦, and width shift range
of 0.10◦.

Prediction Model
The CNN models used in this study will be described in detail
here. To perform the 3-way classification task, three different

CNN models were tested. The first model is a CNN that was
trained from the ground up. Furthermore, the second and third
models used the transfer learning technique. CNN models with
pretrained ImageNet weights, such as VGG-16 and ResNet-50,
were used instead of training a model from scratch. These models
were trained to classify 1,000 different image classes using the
ImageNet database, which contains over a million images.

Convolutional Neural Network From Scratch
Figure 3 depicts the 2D CNN architecture that was created from
scratch. In a nutshell, the architecture consists of the following
elements: five convolutional layers followed by ReLU activation;
five max-pooling layers; two dropout layers; a flatten layer; a
fully connected layer with 256 neurons followed by a dropout
layer and a batch normalization layer; and, finally, an output
layer with softmax activation that outputs the probability of
prediction for each class.
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FIGURE 3 | Layout of CNN trained from scratch. Briefly, the architecture comprises the following: 5 convolutional layers followed by ReLU activation; 5 layers of
max-pooling layers; 2 dropout layers; a flatten layer; a fully connected layer with 256 neurons followed by a dropout layer and a batch normalization layer; and
ultimately an output layer with softmax activation, which outputs the probability of prediction for each class.

The CNN first layer was fed preprocessed axial view brain
sMRI data. The second layer was a convolutional layer that
performed convolution operations on input images and filtered
the output to produce multiple feature maps. There were five
convolution layers in total, each with 16-32-64-128-256 feature
maps. All of the convolution filters had a size of 22, a stride
of one, and “same” padding, which ensured that the output
was the same size as the input. After each convolutional layer,
a max-pooling layer with 22 regions was applied. The pooling
layers functioned as down-sampling layers, resulting in the
creation of multiple pooled maps. The final two pooling layers
were followed by a dropout layer with a dropout rate of 0.5,
which meant that 50% of the nodes in the layers would be
dropped out to ensure regularization and prevent overfitting.
The pooled feature maps were then flattened to a 1D vector
and fed into the next fully connected layer with 256 neurons.
A batch normalization layer was added before the dropout layer
to improve the model’s regularization even further. The final
layer is the output layer with three nodes incorporating softmax
activation function to determine the probabilities of each possible
class of the classification task. Finally, a vector consisting of
probabilities belonging to the AD, CN, and MCI classes was
obtained as the final classification result.

VGG-16
In this study, the pretrained VGG-16 model was used in the
form of a feature extractor (Simonyan and Zisserman, 2015).
Also, VGG-16 with pretrained weights was used as a bootstrap
feature extractor for feature extraction from the preprocessed
brain sMRI images. The extracted features were then directed to
a new classifier, which was trained from scratch.

It is important to note that the gray scale image dataset could
not be directly fed to the VGG-16 model because it is a pretrained
model with a fixed input configuration. VGG-16 requires RGB
images with three channels as input. A gray scale image, on
the contrary, has only one channel. The obvious solution is to
iteratively repeat all of the image arrays in the dataset three times
on a new dimension. As a result, the same image would appear in
all three channels. This was accomplished by specifying the color
mode as “RGB” in the Keras library’s flow from directory method.

ResNet-50
The pretrained ResNet-50 model was used as a feature extractor,
similar to VGG-16, and a new densely connected classifier was
used for prediction (He et al., 2016). Deep neural network
training is difficult because adding more layers causes the
infamous vanishing gradient problem, also known as the
exploding gradient problem. The main feature of ResNet is
the design of residual connections. The residual block enabled
ResNet to connect the previous layer to the current layer as well
as the layer behind the previous layer. As a result, each layer
can capture more than just the observations of the previous
layer. Furthermore, the batch normalization layer is placed
after each convolutional layer in ResNet. Batch normalizations
normalize layer weights, allowing for faster training rates. This
speeds up deep network training and reduces the vanishing
gradient problem.

Parameters and Evaluation Metrics
Table 2 summarizes the best parameter combinations for training
the three networks. In addition, the evaluation metrics were
accuracy, precision, recall, and F1-score. Keras, an open-source
high-level neural network API for building deep models, was
used to build all of the deep learning models, with TensorFlow
as the backend. Keras was chosen because it enables rapid
prototyping and parallel computing with GPUs. In this study,
training, validation, and testing routines were carried out on
Google Colab in order to execute Python 3 codes for data
preprocessing and the development of a CNN model. The GPU
model would be assigned at random based on the availability on
Google Colab. There was no published limit on the idle timeout
period, RAM size, or disc size. Typically, a RAM size of around 13
GB and a disc size of around 70 GB would be allocated for GPU
accelerated runtime.

In addition, to facilitate model training, two types of
“callbacks” in Keras were implemented during training: Early
Stop and ModelCheckpoint. Early Stop enabled the models to
stop training if their performance did not improve after five
epochs of monitoring validation loss. This is one method for
preventing a model from overfitting. Next, ModelCheckpoint
ensured that models always saved the best weights while training
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to avoid loss of progression. Saving the weights is more efficient
than saving the entire model’s information because a large
network like VGG-16 can take up at least 500 MB of memory.

RESULTS AND DISCUSSION

Training and Validation Performance
Table 3 reports the training and validation performance of the
three different CNN models being experimented.

To avoid overfitting, all model training was completed with
an early stop and a patience level of 15 epochs. The training and
validation routines were halted when the validation loss began
to deteriorate. The CNN trained from scratch finished training
in 46 min, making it the quickest of the three models. Deep
CNN, such as VGG-16 and ResNet-50, with multiple stacking
layers, can be computationally expensive and take much longer
to train than a shallow model trained from scratch. ResNet-
50’s longer training time can be attributed to a large number of
trainable parameters. The ResNet-50 model, which has a frozen
convolutional base and a swapped densely connected classifier,
has 42.5 million trainable parameters.

The VGG-16 model, on the contrary, had an identical
densely connected classifier and a frozen convolutional base with
8.4 million trainable parameters. Interestingly, despite having five
times the number of trainable parameters as VGG-16, ResNet-
50 spent only 21.33% more time on training. The inclusion of

TABLE 2 | Hyperparameters of CNNs adopted in the experiments.

Parameter CNN VGG-16 ResNet50

Number of epochs 100 100 100

Batch size 512 256 256

Weight initializer Xavier uniform Xavier uniform Xavier uniform

Optimizer Adam Adam Adam

Adam parameters β1 = 0.9,
β2 = 0.999

β1 = 0.9,
β2 = 0.999

β1 = 0.9,
β2 = 0.999

Learning rate 10-4 10-5 10-4

Loss function Categorical
cross-entropy

Categorical
cross-entropy

Categorical
cross-entropy

Metrics Accuracy Accuracy Accuracy

Data augmentation Rotation,
zoom, height
shift, width
shift, shear,

horizontal flip

Rotation,
zoom, height
shift, width
shift, shear,

horizontal flip

Rotation,
zoom, height
shift, width
shift, shear,

horizontal flip

All the architectures adopted Xavier’s uniform as the weight initializer and Adam
as the optimizer.

TABLE 3 | Summary of training and validation performance.

Model Training
time

(minutes)

Steps Training Validation

Accuracy Loss Accuracy Loss

CNN 46 97 0.8755 0.3102 0.7270 0.7094

VGG-16 75 57 0.9492 0.1511 0.8066 0.5263

ResNet-50 91 56 0.9164 0.2150 0.7686 0.5901

multiple batch normalization layers between the convolutional
layer and the non-linear activation function may be the primary
reason for this, allowing a higher learning rate to be used
(He et al., 2016).

The loss function quantifies a model’s performance in
classifying input images from a dataset. The loss value
indicates how well a model performs after each optimization
epoch. The goal of training a deep learning network is
to minimize the error calculated using the loss function
while increasing testing accuracy. VGG-16 achieved a training
loss value of 0.1511, while CNN from scratch and ResNet-
50 achieved training loss values of 0.3102 and 0.2150,
respectively. In terms of validation performance as measured
by loss value, VGG-16 achieved the lowest loss value of
0.5263. ResNet-50 came in second with a loss value of
0.5901, and CNN from scratch came in third with a loss
value of 0.7094.

The transfer learning method was tested for its ability to
produce satisfactory results on small datasets, as seen in recent
literature. Deep models with pretrained weights, such as VGG-
16 and ResNet-50, were used for feature extraction instead of
learning the convolutional bases from scratch. To improve the
output classification scores, a new densely connected classifier
trained from scratch was added to both models. Both VGG-
16 and ResNet-50 outperform the CNN trained from scratch
in this case. Despite the use of various regularization methods,
such as dropout, batch normalization, and data augmentation,
the overfitting problem persists in both models.

Testing Performance and Discussion
After all of the models had been trained and validated, the 20%
held out testing data were run on each and every model. The
confusion matrix was used as a tool to assess model classification
performance, along with a summary of prediction results. The
number of correctly or incorrectly predicted predictions is
summarized systematically in a table, with count values broken
down by class. The confusion matrix is a table with three rows
and three columns because it is a three-way classification task
with three different classes. The predicted lab is represented
by the rows (y-axis), and the predicted label is represented
by the columns (x-axis). Figure 4 depicts confusion matrices
that describe each model’s classification performance on test
data. Using the seaborne library, each confusion matrix is
visualized as a color-coded heat map. The darker cells for
the diagonal elements can be seen in all of the plotted
confusion matrices. This indicates that a large amount of data
is correctly predicted according to its label. The off-diagonal
elements with light shades, on the contrary, indicate model
misclassifications.

The CNN predicted the MCI group with the highest accuracy
and the CN group with the lowest accuracy when trained from
scratch. It correctly classified 304 of 409 MCI images and 291
of 408 CN images. In contrast, the AD group has the highest
classification accuracy in VGG-16 and ResNet-50, while the MCI
group has the lowest classification accuracy. ResNet-50 classified
341 AD images out of 410 AD images predicted by VGG-16.
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FIGURE 4 | Confusion matrix of three models on test data: (A) CNN from scratch; (B) VGG-16; and (C) ResNet-50. Each of the confusion matrices is visualized as a
color-coded heat map using the seaborne library. It can be observed that all the plotted confusion matrices have darker cells for the diagonal elements. This
indicates that more data are being predicted correctly to their respective label. Conversely, the off-diagonal elements with light shades indicate misclassifications
done by the model.

In the MCI group, VGG-16 correctly predicted 288 images, and
ResNet-50 correctly classified 282 of 409 AD images.

To further evaluate the classification model, classification
metrics such as accuracy, precision, recall, and F1-score were
calculated with the aid of the confusion matrices. For each
classification model (CNN from scratch, VGG-16, and ResNet-
50), the reported classification performance on test data is
accuracy of 72.70, 78.57, and 75.71%, respectively; precision of
71.50, 73.94, and 72.86%, respectively; recall of 71.32, 81.37, and
75.00%, respectively; and F1-score of 71.41, 77.48, and 73.91%,
respectively. Based on Figure 5, it is observed that VGG-16,
which achieved the lowest loss value of 0.5263, performed the
best on test data with an accuracy of 78.57%. The lowest testing
accuracy of 72.70% is obtained using the CNN from scratch.

For further in-depth evaluation of performance on test data,
the classification results for each class label are reported in
Table 4. Similar to what was being analyzed using the confusion
matrices, the AD group has the highest accuracy value for

VGG-16 and ResNet-50. VGG-16 performed the greatest in
predicting AD class with an accuracy of 83.90%, precision of
82.49%, recall of 83.90%, and F1-score of 83.19%. Interestingly,
ResNet-50 has the lowest accuracy in predicting the MCI class.
Overall, using VGG-16 improved the performance values for
all three classes.

The AD group scored the highest accuracy value for VGG-16
and ResNet-50. VGG-16 performed the greatest in predicting AD
class with an accuracy of 83.90%, precision of 82.49%, recall of
83.90%, and F1-score of 83.19%.

DISCUSSION

From the results obtained, the VGG-16 model outperformed
the CNN trained from scratch and the ResNet-50 model. It
has the best testing performance with an accuracy of 78.57%,
precision of 73.94%, recall of 81.37%, and F1-score of 77.48%.
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FIGURE 5 | Comparison of classification performance on test data. For all the metrics, VGG-16 ranks the highest.

Comparing its performance to other related works, VGG-16 has
a performance below the average. Being trained on the ImageNet
dataset, VGG-16 was able to extract representations using its
convolutional base for learning the multiclass classification task.
Despite the great performance on learning the representations,
VGG-16 still encountered the typical overfitting problem due
to the small dataset used. Several regularization methods were
used, such as dropout, batch normalization, data augmentation,
and early stopping. However, the signs of overfitting can still
be noticed. This could be due to the high complexity of the
classification task. The subtle discrepancies between the MCI
and AD images require a large amount of data to learn the
representation to classify them. With the small dataset being used
in this project, the VGG-16 model could not learn the problem
completely, hence the overfitting problem. Another possible
reason could be that the dataset being used in this project has
substantial differences as compared to the ImageNet dataset. The
VGG-16 was pretrained on general images from the ImageNet
without including medical images. Hence, the high-level features
learned by the higher layers of the VGG-16 are not sufficient to
differentiate the classes in this study.

Based on the results obtained, it is of importance to choose
a proper training strategy for the model. Hence, the model is

TABLE 4 | Testing accuracy, precision, recall, and F1-score for all class label.

Model Class
label

Accuracy Precision Recall F1-score

CNN from scratch AD 0.7244 0.7775 0.7244 0.7500

CN 0.7132 0.7150 0.7132 0.7141

MCI 0.7433 0.6941 0.7433 0.7178

VGG-16 AD 0.8390 0.8249 0.8390 0.8319

CN 0.8137 0.7394 0.8137 0.7748

MCI 0.7042 0.7978 0.7042 0.7481

ResNet-50 AD 0.8317 0.7715 0.8317 0.8005

CN 0.7500 0.7286 0.7500 0.7391

MCI 0.6895 0.7726 0.6895 0.7287

Bold values are highest value.

able to spend the least time training while trying to cover as
many cases as possible. An adequate model capacity is essential
for model generalization. Model depth should be kept as small
as possible to prevent a model from overfitting on training
data. The greater the depth, the more cases the model can
memorize. As a consequence, the final system will perform
worse on unseen data. Another possible reason behind inferior
performance could be insufficient data augmentation. The data
augmentation used is insufficient to generate diversity for the
original dataset. An example of aggressive data augmentation
can be seen in the study by Basaia et al. (2019). Apart
from general augmentation transformations such as rotation,
zooming, and scaling, the study implemented deformation,
cropping, and flipping.

The strengths of this study are elaborated as follows. In
general, most of the studies emphasized performing binary
classification of different phenotypes of AD. In this study, three
different classes (AD, CN, and MCI) are classified directly using
a single classifier. This study is less common as most of the
studies deal with the problem of multiple class labels by dividing
the problem into several binary sub-problems. Moreover, tissue-
segmented sMRI brain images were used, which substantially
lower the requirement for computational costs in terms of
power and time. Second, MRI images were segmented into GM,
WM, and CSF for training and testing the model. Moreover,
models were tested using an independent set of images held out
from the dataset. In addition, the performance of popular deep
transfer learning models such as VGG-16 and ResNet-50 was
evaluated to study their performance on images not from the
ImageNet domain.

CONCLUSION

In this study, we have conducted a series of experiments with
different deep learning CNN architectures on preprocessed axial
sMRI brain images retrieved from the ADNI database. To address
the problem of classifying brain sMRI images of three distinct
classes of AD, CN, and MCI, three different CNN models were
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built, namely, a CNN from scratch, VGG-16, and ResNet-50. The
VGG-16 model outperforms the other two models in testing.
The results show that, despite being trained on general images
from the ImageNet dataset, VGG-16 is capable of extracting
relevant features for the classification task. Using the same
dataset, the pretrained VGG-16 outperforms shallow CNN and
classical machine learning algorithms. However, its performance
is considered subpar when compared to other literature, which
also employed deep learning techniques. Increasing the number
of data for training is the main factor for improving classification
performance. This project serves as a catalyst to motivate further
study on computer-assisted AD diagnosis systems that can
provide automated early diagnosis of AD and the detection of
more phenotypes of AD.

For future studies, a list of improvements can be suggested.
Effort should be devoted in attempting different pretrained
CNN families such as AlexNet (Krizhevsky, 2014), Xception
(Chollet, 2017), Inception (Szegedy et al., 2016), MobileNet
(Howard et al., 2017), and other variants of VGG and ResNet
as well as the more recent state-of-the-art network (Tan
and Le, 2019, 2021) as base model for feature extraction.
Furthermore, classification performance could be improved
through fine-tuning. Unfreeze some layers, or even half of
the model, for training with the classifier at a slower learning
rate. Finally, a few different methodologies for improving
classification performance to distinguish between AD, CN, and

MCI may be investigated in the future. One method is to
include multimodal data in the study. Multimodal research
necessitates feature fusion to combine features from various
modalities into a single feature vector. Another method for
improving performance is to enrich the feature learning process
by fusing low-dimensional features like clinical scores with the
MRI features space.
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